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ESTIMATION OF THE LEAKAGE FOR COMPRESSIBLE GASES 
IN H I G H - S P E E D  SHAFT SEALS 

Chung Kyun Kim* 

(Received July 25, 1987) 

A comprehensive analytical work to estimate the leakage rate is presented for compressible fluid flow across shaft seals. The 
sealing gap for this study includes geometric terms such as eccentricity, misaligned shaft, and sinusoidal waviness of the mating 
surfaces. A temperature distribution across the sealing gap is developed using a temperature dependent viscosity. A pressure 
distribution in polynomial form is solved based on the simplified nonlinear Reynolds equation using the approximate power series 
expansion, It was found that the seal performance is largely influenced by the eccentricity and width of the seal at high speeds 
(greater than about 150m/s). 
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NOMENCLATURE 
a : Veloci ty of sound 
c~ : W a v e  velocity of the lower body 
c .  : Wave  velocity of the upper body 
e : Eccentr ici ty ( = O~ O2) 
e0 : Shaft  eccentr ici ty at z = 0 ( -- O1N ) 
k : Specific heat  rat io 
K : Thermal  conductivi ty 
L : Half  of the seal width 
m : Mass flow rate  
32/ : Dimensionless mass flow rate  
N : Center at the midplane, i.e., z = 0 
O1 : Center of the seal 
02 : Center of the shaft at any plane 
p : Pressure 

Rg :Gas  constant  
l : T i m e  
T : Tempera tu re  
U : r2co, velocity of the shaft 
w : Tangent ia l  veloci ty  component  of fluid 
w : Axia l  veloci ty component  of fluid 
z : Axia l  coordinate  
y : Angle of tilt 
r : yL//~,i.e. /~ tilt parameter  of the shaft seal 
r : e0//~, eccentrici ty rat io at z =0  

: Viscosity of fluid 
x : 2z /A ,  wave  number 
/I : Wavelength  
A ,  : T~/ Tr 
p : Coefficient of friction 

~ : Ih,  I//~ 
~ : I h d / h  
p : Density 

: Angular  speed 
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~ l  : XlCt 

~u : x ~ ( c ~ + U )  
w : Angular  speed of the moving  surface 

Subscripts 
1 : Seal 
2 : Shaft  
r : Reference conditions 
l : Lower  
u : Upper  

1. INTRODUCTION 

Eccentricity,  misalignment,  and wavy  surface on the 
contact ing surfaces of shaft seals may be the major  compo- 
nents that largely affect the seal performance.  In actual 
practice, it is very likely that these components  are  combined. 
However ,  the effects of the components  are t rea ted separate- 
ly because of its complexi ty  in the l i terature.  

The  geometry  of misaligned shaft has been studied by 
Sassenfeld and Walther(1954). Several  invest igators  have 
studied the effects of a misaligned shaft on the seal 
performance(Adams and Colsher, 1969; Chen and Jachson, 
1985; Dhagat, Sinhasan and Singh, 1981; Fleming, 1979). 
The  wavy model of face seals on the contact ing surfaces was 
analyzed by Bryant  and Kim(1987). Zuk(1973) addressed that  
pressure profiles are independent of fluid propert ies for sur- 
faces with small l inear tilts. 

The  sealing gap must be small enough so that  the leakage  
flow rate  is minimal. But it must be large enough so that  the 
power  loss due to viscous friction is very small. To  satisfy the 
contradict ing situations, it is necessary to consider all the 
possible elements of the sealing gap for an accurate  estima- 
tion of pressure distribution and mass leakage  rate  through 
the sealing gap. 

In this paper, a mathemat ica l  analysis of compressible fluid 
flow across shaft seals has been presented for var ious combi- 
nations of the geometr ic  components.  The  nonlinear  
Reynolds equation was analyt ical ly  solved using a power  
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series technique. 

2. A N A L Y S I S  OF SEALING GAP 

The seal performance is coupled to the determination of 
the accurate sealing. The overall sealing gap, h around the 
sealing circumference may then be described by a function of 
the form 

h(g, z, t ) = h + h , + l ~  (1) 

where/~ is the radial sealing gap for the concentric shaft seal 
defined as /~ r i - r 2 ,  /~, represents the sealing gap for the 
eccentricity and misaligned geometry of the shaft seal, and/~ 
denotes the sealing gap variation due to wavy surfaces 
between the rotating shaft and the seal ring. 

2.1 Sealing Gap due to Eccentricity and 
Misalignment 

In most practical seals, the shaft is slightly bent and deviat- 
ed from the center line of the seal ring due to a load being 
placed between two supporting parts such as a bearing. The 
sealing gap variation is associated with the distance between 
two eccentric cylindrical surfaces with an angular misalign- 
ment of the shaft as shown in Fig. 1. We shall consider the 
axis of the shaft to be straight through tilted. The sealing gap 
change, h, of the eccentric and misaligned shaft, at any point 
of the circumferential direction is determined by 

~ l m ] ~  U 

1.5/2z, r/~C:4~. 
, V "~, ,,," "% 

r - - - -2  

h = o  

Fig. 2 Surface waviness of the shaft seal 

sionless axial coordinate, Z defined as (z + L)/2L, is given by 

~[ E ( 2 Z - I )  gr] (5) r  k g sin 

where NO~= y L ( 2 Z - 1 )  
Equation (4) in terms of Z, eccentricity ratio Eo, and tilt 

parameter ~, can be rewritten as 

g2=e~+[s(2Z--1)]2--2Eo e ( 2 Z - 1 )  cos gr (6) 

Substituting Eq. (5) into Eq. (3) for the small tilt angle gives 

h,=t~[l+EoCOSO-r c o s ( 0 -  gr)] (7) 

(r..+h,)2=e2+re+2erl cos(0+ r (2) 

where 0 denotes the angular coordinate measured from the 
line of centers in the midplane. r is an angle measured from 
the line of centers in the midplane to that at any other plane. 
e is the eccentricity measured along the line of centers 
between the shaft and the seal at any plane except the central 
plane of the shaft. The eccentricity is assumed to be a small 
fraction of rl. Eq. (2) can then be simplified using the eccen- 
tricity ratio, g -  e / h  

h, = tT[l+ g cos(0+ 6)] (3) 

From the triangle NO~ 02 of Fig. l(b) 

The above expression does not include the surface waviness. 
The first term on the right hand side is the normal sealing gap 
for the concentric case. The second term represents the 
eccentric effects of the parallel shaft seals. The last one 
denotes the sealing gap variation due to the angle of tilt. 

2.2 Sealing Gap Variations Caused by Sinusoidal 
Surface Waviness 

The sinusoidal waviness on the shaft and seal surfaces is 
considered. For the purpose of the analysis, the shaft and seal 
ring can be opened up into a blade of seat width, 2L in Fig. 2. 
The sealing gap change, h due to the sinusoidally wavy 
surfaces is then given by 

e2=eo2+ NO2+2eoNO2cos ~ (4) 

where ~ is the attitude angle between load line and line of 
centers in the midplane. From the Figure l(b), r using dimen- 

J e 

Fig. 1 Geometry of a misaligned shaft seal 

ffz= -[lTeglsin(n,o + r + r  (8) 

where [/~q and I~ul are the amplitudes of the surface waviness 
at the shaft and seal, respectively, n is the number of waves 
around the shaft and seals. 

3. A N A L Y S I S  OF THE SHAFT SEAL 
ACROSS THE SEALING GAP 

3.1 Temperature Distribution 
The heat conduction along the normal to the sealing gap is 

assumed to be the major mechanism of heat transfer from (or 
to) the seal surfaces. It is assumed that the specific heat and 
the Prandtl number are constants for gases. The radial 
velocity is negligibly small for the very thin film between the 
two plates. The temperature is assumed to be axially sym- 
metric. The energy equation in cylindrical coordinates for 
steady state flow of a compressible fluid may be written as 
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1 3 r - S r (  - 9 T \  8 / -  a T \  aT  ~K a;: ) + d2t ~ a~, ) -  oc,v~.a~: 

+_4~!~o. ave 
r Or (9) 

The energy equation can be rewritten using the Reynolds 
n u m b e r ( R e = h U / ~ D ,  Prandtl number(Pr=pc~/K) ,  and 
Eckert number [ Ec := ( k -  1) Ma 2 T, / ( 7", - 7",) ], and t he fol- 
lowing dimensionless parameters 

re-- vo/U PS:  v , / U  (10a) 
R= (r--- r ~ ) / ( r , - r , )  Z = ( z + L ) / 2 L  (10b) 
7 ~= ( 7 " -  T~)/(  7 ~ -  7~) p---o/p~ (10c) 

= ~/~,  (10d) 

Therefore the energy equation in dimensionless form 
becomes 

1 3 [ ~ _ 3 7 ' \ , /  h V 8 / aT 
)~- -b~-t '~'~ bfi)+t 2L ) b2t ~ ~2 ) 

2- 2 

P r E c [ -  D { *7[ (1-/?~) Vo+ R2-~ ~ - (  V]+ Vff)1} 

+4( l_ f i=) (  y/Vo avo~] \ ~ -  ~3~, j ]  (11) 

where Ma= U / a  is the Mach number. It is assumed that the 
sealing gap, h is much less than the width of the seal, i.e., h~ 
2L<<l. As the radius ra t io , /? ,  approaches unity, terms of the 
order of (1-/?~) become very small. If the temperature 
difference between two seal surfaces is large the pressure and 
dissipation terms may be negligible (Constantinescu, Smith 
and Pascovici, 1980). The viscosity of a compressible fluid 
may be expressed as a function of the temperature (Con- 
stantinescu, 1969). 

~ = e~(7"/T~) ~ (12) 

where m is determined by the property of a fluid. 
A simplified energy equation for the negligible seal curva- 

ture is then obtained 

8 [  a T \  
7)71t ,l-~;: ) = 0 (13) 

Based on the data given in a later section, we introduce an 
error of approximately 4~6% by neglecting the dissipation 
term. The boundary conditions for Eq. (13) are given by 

7"=T~, at r =  r~ = ~ +/~,  (14a) 
T=T~,  at r =  rz= ~ + h , -  ~ (14b) 

Integration of Eq (13) using the expressions for viscosity 
(12) and the boundary conditions (14) yields the temperature 
distribution across the sealing gap 

I (15) 

with f l= T / T,, 13A= T~/ T,, and R~=r~/  r~. 

3.2 Velocity Distribution 
In a similar manner some assumptions for the temperature 

distribution can be made for the velocity profiles. The body 
force is negligible. It is clear that the order of magnitude of 
the inertia forces of the equation of motion in dimensionless 
form depends on the Reynolds number. The condition to 
neglect the inertia forces for the shaft seal is that the 
Reynolds number must be less than the ratio of the width of 
the shaft seal to the sealing gap, i.e., Re<<2L/h. The effect of 
the surface curvature can be neglec~md owing to the small 
sealing gap. By examing the various terms of the Navier- 
Stokes equations with their relative order of magnitude it 
may then be greatly simplified for the steady conditions and 
a compressible laminar fluid flow. 

0P=  0 Or (16a) 

1 3p 8 [ 8v~\ 
' r  80 = c)r~ ~] '~)r- ) (165) 

az - 8r~V 8r } (16c) 

For the problem (16c) under consideration, the boundary 
conditions are 

v~ :: 0, at r = r ,  (17a) 
v , : :0 ,  at r r, (17b) 

By using Eq. (15) and applying the boundary conditions (17), 
the velocity distribution in the axial direction can be written 
a s  

h ~ ( an ~/(~) 
v, : :  ~7\  clz] (18) 

where 

f, (/~) _ f l - 1  - flA ---1- (19b) 

m + l  
= ( 1 9 c )  

3.3 Pressure Distribution 
With the aid of the ideal gas equation, the temperature and 

velocity distributions of the shaft seal, the generalized form 
of Reynolds equation for variable viscosity and density is 
obtained by integrating the continuity equation across the 
sealing gap. The allowance for such w~riation in viscosity and 
density destroys the linearity of the equation and increases 
complexity. 

The application of the narrow bearing approximation leads 
to the simplification of the Reynolds equation. As the width 
of the shaft seal becomes small compared with the outside 
radius of the shaft seal, the circumferential pressure gradient 
can be neglected in comparsion to the axial  one in the 
dimensionless form of the modified Reynolds equation. The 
dimensionless equations are 

--4-r]~UL 2p h R~= ~ -  (20) 
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The normalized form of the modified Reynolds equation can 
then be written as 

Unknown coefficients of the pressure expression (23) can be 
determined by the boundary conditions 

3z\  3z ] A~ c~0 ] (21) 

where 

F~= l I + R ~ + R ~  G1 
A, (1 - - /~ )  [ 3 

B A - I [  ( r n + l ) f l ~ ( 1 - R ~ .  5 0 .  

( r e + l )  ( i - / ~ )  (i film+') '~ 
( 2 m + l )  (I fl~'+') ] 

4 (1 + R~)(/f~flA--2 1) ]} (22a) 

i [ ( m + l ) ( 1 - - f l ~ ) ]  
F2=A,(flA_I) 1 m(l_fl~+~) (22b) 

A power series technique in obtaining the solution of 
nonlinear equation (21) is useful for the complicated Reynolds 
equation (6). We assume that the pressure and sealing gap 
is given in the form of the series 

P ( Z , O , t ) = ~  P,Z' (23) 
i = o  

futhermore 

/ t ( Z ,  8, t ) = ~ .  I4,Z' (24) 
i = 0  

where 0<Z_<I .  The coefficients of Eq. (23) will be deter- 
mined so that the governing equation (21) and its boundary 
conditions (28) will be satisfied. 

Substituting Eq. (23) and (24) into Eq. (21) and collecting 
terms of like power of Z gives a system of equations 

k~o{~o~_~ ~=o[3(k-i + l) ( j - k - m +  l) 
�9 I2ij-~ ~+,P, Pk-,+,+ (i+ 1) ( k -  i+1 )  
�9 HJ-k ~P~+,P~ ~§ ( k -  i+1)  ( k -  i+2)  

�9 I2L-h ~P~P~ z+2]I~InHm . -AkP~ k}=0 (25) 

In order that the equation (25) in terms of Z be valid over an 
interval, the coefficients of all powers of Z need to vanish 
independently. This generates a recursive formula for Pj 
given by 

Pj+2-- - S H ( ] + I ) ( j  + 2)/4gP0 

where 

(26) 

SJ =~o{~o 2~=~ ~_o [3(k - i  + l) ( j -  k - m +  l) 

+ ( i + 1 )  ( k - i + l ) / ~ j  , ~P,+,P,-~+,] 

�9 IYIntYIm_n-A,p,_h} 

+ ~_'o[iZ*0 2~_~ ~o (k i + l ) ( k - i + 2 )  
�9 H~ ~ ~ I ~ , ~ _ . p , p .  ,+2 

+ ( j - k )  (j-k+l)I2Io3Pk+,P3_,§ (27) 

P~ at Z = O ( z = - L )  (28a) 

~ P~=Po(P=Po) at Z = I ( z = L )  (28b) 
j = O  

where Pf is a dimensionless internal pressure and Po a dimen- 
sionless external pressure. The first coefficient, P0 of Eq. (23) 
is given by the equation (28a) and P1 may be determined from 
Eq. (28) in the following manner : Substitute Eq. (26) for j -  
0, 1, 2, ... into Eq. (28b) and truncate the infinite series at some 
N that gives acceptible accuracy. The truncated series is a 
polynomial in P1 with one real, positive root that satisfies Eq. 
(28b). Once P~ is known, the higher order coefficients such as 
P2, P3, "" can be generated using the equations (26) and (27). 
Here 

/to = l+EoCOS O + r  gr) + h/h 
/ t ,  = - 2 s  c o s ( O -  gr) 
f l~=o,  f l~=o,  ... 

Ao = ~n~ cos(n~O-fl~t+r A~F~ 
F2 r 

+~([Eos in  0 + r  s i n ( P -  ~ )  h dOJ 

A I = -2--%F~2 sin (0 - gr ) 
�9 1 

A2=0, A3=0, ... 

(29a) 
(29b) 
(29c) 

(30a) 

(30b) 

(30c) 

3.4 Leakage  Flow Rate 
The mass leakage rate in the axial direction is given by 

2 ~ r u  

(31) 

The dimensionless form of the above equation can be 
obtained by substituting the perfect gas law, the axial veloc- 
ity in Eq. (18), the dimensionless parameters of Eq. (20), and 
pressure expression (23) into Eq. (31). 

2~ 
M :  Fln fo "[ t?Io3PoP~ + (3/4~PoP~ + 2/toPoP2 

+ ;4oP?) i~:z +...] do (32) 

where 

M -  RgTrrzfi 
87rU2 L 3 rh (33) 

Since the mass flow rate (32) cannot vary with Z it may be 
simplified with Z = 0. According to Eq. (32), the leakage rate 
varies with the third power of the sealing gap and the second 
power of pressure. It indicates that the pressure distribution 
will also be an influential element to estimate the leakage 
rate for the compressible fluid flow. Eq. (32) can thus be 
simplified using the integration parameters, I> 

M = F1PoPI (Ia +Ib+Ic +I~ +Ie) (34) 

where 

I a = 2 x  



ESTIMATION OF THE LEAKAGE FOR COMPRESSIBLE GASES IN HIGH-SPEED SHAFT SEALS 7 

($uJa6 ~,Ja7 L , = 3 [ ~ r ( $ g + $ D + 2 & & J , ~ + I g l  = + = 

+ 2 $ . ' J a s )  ] 

Ie = - -  61 gl (&J.. + ~ ' d 9 , )  

and Igl=(d+s=+2e0e cos Or) 
J~ = 3 (2 n.) (n,) 2sin[ ( ~, - 2D.)t + ~ ] 

J~2 = ~ (2 n,) ( n,) 2 sin[ ( a , -  ea, )l + ~) ] 

J~a = 3 ( n,) ( n,) ~rcos[ ( f I , -  a, )t ] 

Ja6=-a (2n,) (1)~cos(2a,t-  ~ -  2q3) 

Ja~ = -c~ (2n , ) (1 ) -~cos (2a , t -  gr - 2 ~ )  

Jo,=a(n,)(1) ~rsin(-a,t+~+ ~') 
A.=a(n . )  (1) ~rsin(-n.t+~+ ~') 

where the symbol, 3o is defined as 

1 if i=j  
&')(~)= 0 if i~:j 

4. RESULTS A N D  DISCUSSION 

A numerical example will be presented to demonstrate the 
validity of the model and solution method developed. A 
typical shaft seal having the geometrical parameters and 
operating conditions; was selected to demonstrate the validity 
of the model and solution method developed. 

Shaft radius, r2 6.35cm 
Waviness magnitude, [/~[ 4.1~m 
Mean sealing gap, /~ 40#m 
Number of waves, n 2 
Tilt  parameter, e 0.3 
Shaft speed, N 50000rpm 
Temperature difference, AT 500~ 
Pressure difference, AP 5.5 x lOSN/m 2 

The material of shaft seals is shown for shaft (steel) 
-seal(carbon-graphite). The material properties are given in 
Table 1. 

All the results presented in this paper were obtained for 
h =  40#m, U = 333m/s and So = 0.38 unless otherwise stated. 

Figure 3 shows a linear pressure drop in the axial direction 
for various values of L~ r2 ratios. The results of the pressure 
distribution along the axial direction are obtained from the 
recursive formula (26). Bryant and Kim(1987) showed a 
similiar pressure drop along the radial direction in the face 
seal. 

Table 1 Material properties of the shaft and seal 
Shaft Seal 

Thermal expansion, mm/mm-~ 10.1• 6 5.2x10-6 
Thermal conductivity, W/m-~ 28.7 16 
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Figure 4 shows a substantial increase in leakage flow rate 
with increasing shaft speeds for the small width of the seal. 
When the shaft speed is around 150m/s the figure indicates 
the initiation of a sharp increase of the leakage flow rate. 
The mass flow rate has been plotted in Fig. 5 against the 
eccentricity ratio for a number of L/r> This figure shows the 
increase of leakage flow rate for the increased eccentricity. 
As the width of the seal increases, the mass flow rate shows 
a linearization. 

In Figs. 6 and 7, the mass flow rate hyperbolically 
decreases as the ratio of L/r2 increases for t7= 40/~m and 70 
#m. As shown in Fig. 7, the high values of mean sealing gap 
will produce a remarkable increase in leakage rate. By 
examining the figures (4-7), it will be necessary to restrict the 

eccentricity and seal width to get an appreciable reduction of 
leakage flow rate. 

5. CONCLUSIONS 

An analytical method to estimate the leakage rate has been 
presented for compressible fluid flow across shaft seals with 
various sealing components such as the eccentricity, 
misalignment, and wavy surfaces. 

Nonlinear Reynolds equation was solved using a power 
series method for the shaft seals. Sufficient accuracy is 
obtained considering the first four or five terms of the pres- 
sure distribution in a polynomial form. 

According to the calculated results, the main factors which 
affects the seal performance at high speeds seem to be the 
width of the seal and eccentricity of the shaft. The result 
appears to show that the leakage flow rate is not a strong 
function of the surface waviness. Thus it is necessary to 
restrict the eccentricity ratio and lengthen the width of the 
seal for the acceptable accuracy of the seal performance. 
This can reduce the leakage flow rate even though the shaft 
speed is high. 
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